“A scientist is a person who asks questions and tries different ways to answer them. . .

A scientist is a person who...
 Asks questions
 Learns from her senses
 Notices details
 Draws
 Writes
 Measures
 Counts
 Sorts
 Tests predictions
 Experiments
 Thinks logically
 Keeps trying
 And has fun.

That's what a scientist is!"

- Barbara Lehn

from: *What is a Scientist*
(Millbrook, 1998)
A Note to Families:

Welcome to Science Adventure.

The Wilsonville Public Library is once again offering an exciting science component to our Summer Reading Program.

The goals for Science Adventure are similar to our Reading Program:

♦ To provide a low-key, fun environment for children to retain and build the science skills they learned during the school year.

♦ To enjoy self-directed reading, learning and exploring.

♦ To have fun!

Our Science Adventure program includes several components:

* Weekly preschool drop-in programs and a preschool take-home science guide
* School-age science classes and activities
* This take-home Science Adventure Science Guidebook for all ages
* A Science Log with stickers to document your explorations

We hope your children will use this Science Guidebook to explore science at home and record their efforts with their Science Log. Once completed, your child can return the Log to the library for a special prize and a chance to win a family membership to a local science establishment.

Enjoy exploring science with your children this summer!

Thanks,

Patrick Duke, Library Director
duke@wilsonvillelibrary.org
What is Science Adventure and who can do it?

Science Adventure is part of our Summer Reading Program. We hope to inspire children of all ages to learn more about science and the world and to say to themselves, “I am a scientist!”

How do I do Science Adventure?

1. Choose an exploration from this guide, complete it, and record your results and observations in the provided spaces.
2. Put a sticker on your Science Log each time you have completed an exploration.
3. When you complete 10 explorations, bring your log into the library.

What happens when I finish my log?

Congratulations! Check the Reading & Science Log for the earliest date you can bring your completed log into the library for a prize.

What if my child is under 5?

Young children dive into science by playing and exploring. We have an additional booklet of ideas available for children under five at the Children’s Reference desk and on our website.

What if I do more than one exploration in a day?

Good job scientist! Complete as many as you like each day.

Check the Reading & Science Log for the earliest date you can bring your completed log into the library for a prize.
May I do science explorations not listed in this guide? Yes! Choose your own explorations or use ideas from books and websites.

Can I keep doing science after I finish? Yes! Create your own science notebook and keep exploring.

OBSERVE! — EXPLORE!

RECORD! — BE SAFE!

Helpful Reminders:

- Use this Science Guidebook in the way that works best for YOU.
- The Science Guidebook includes ideas for science explorations, but you can also try explorations from books or websites, or make up your own.
- We are including blank pages in the back of this guide. Feel free to use them to record the results of your own explorations.
- Always be mindful of safety when you try science activities. Check with an adult if you are thinking of working with any dangerous materials.
- Remember, staff at the library can help you with your questions. Call us at 503-570-1599, or email us at childrens@wilsonvillelibrary.org.
What is the biggest bubble you can make? What patterns can you make with bubbles? Detergent does more than clean dishes. Trap air in a soap and water mixture to create some scientific bubbles.

Materials:
- Dishwashing liquid (Joy or Dawn work best)
- Corn syrup (optional: bubbles last longer and stick better)
- Water
- Measuring cup and bowl
- Storage container with lid
- Straws or other bubble wands (you can make one with a pipe cleaner)
- Washcloth

Directions:
1. Measure 3 cups of water, 1 cup dishwashing liquid, and 1/2 cup of corn syrup, and pour them into a bowl.
2. Stir mixture slowly together and then pour it into your storage container.
3. Let the mixture stand overnight (it will make stronger bubbles).

Try another recipe:
1 cup distilled water
2 Tablespoons Dawn
1 Tablespoon Glycerin (found at pharmacies)
4. Now it is time to blow some bubbles! There are different ways to try.

Inside on a table with a straw:

* Pour your bubble solution into a bowl.
* Dip a washcloth into the mixture and wipe it across the table.
* Dip the end of a straw into the bubble mixture in the pan.
* Put the end of the straw into the bubble solution which is on the table.
* Gently blow into the straw to create bubbles, big bubbles, multiple bubbles!

What do you notice about the bubbles? Can you poke your finger in a bubble without it popping?

Blow a mountain of bubbles in a cup:

* Pour some of your bubble solution into a cup.
* Place a straw into the cup and blow (and keep on blowing).

 What do you notice about the bubbles?

Go outside and blow bubbles:

* Using a straw or another type of bubble wand, experiment to see how big a bubble you can blow.
How can a chemical reaction create a big explosion?
Mix two common kitchen chemicals to find out. Make sure you do this experiment outside as it can be messy!

Materials:

- Baking Soda
- Vinegar
- Water
- Paper towel, cut into a 6 inch square
- Sandwich baggie (Ziploc type), also larger sizes
- Measuring spoon and cup

Directions:

1. Work outside for this experiment.
2. Measure 1 1/2 tablespoons of baking soda onto a 6 inch square piece of paper towel.
3. Fold up the four sides of the towel around the soda tightly so the soda will stay inside like a little envelope.
4. Mix 1/2 cup of white vinegar and 1/4 cup of warm water together
5. Pour this mixture into a sandwich bag that will seal tightly (like Ziploc). Partially zip the bag shut, but leave an opening that is big enough to put the packet you just made through.
6. Drop the soda packet into the sandwich bag through this opening, quickly but carefully.
7. Immediately seal the rest of the bag closed. Work very quickly!
8. Standing outside in a clear area, shake the bag a bit.
9. Put the sealed bag on the ground and stand way back!

Draw and explain what happened:

Try the experiment again, using a quart or gallon bag following the same procedure. Did the same thing happen?

With these larger bags, change the amount of baking soda, water and vinegar. Write down what you changed and what happened.

Background: When vinegar and baking soda combine, they produce the gas *carbon dioxide*.
Jumping Paper

Can you make paper jump? Use static electricity to move paper without touching it. You will get a big charge out of this one!

Materials:
- Paper: may use wrapping tissue, Kleenex, toilet tissue, writing paper
- Balloon
- Scissors
- Ruler

Directions:
1. Cut one type of paper into tiny pieces like confetti.
 (use one type of paper at a time)
2. Put the pieces of paper on a table top.
3. Rub a balloon across your dry hair many times.

Note: As you pull the balloon away, what happens to your hair?

Background: Negative electrons leave your hair and go to the surface of the balloon. Your hair is now more “positively” charged.
4. Slowly move your balloon close to, but not touching, the pieces of paper. About an inch away works well. (You can use the ruler and see how close you need to be before anything starts to happen.)

Describe what happened.

Did you see, hear or feel the static electricity?

5. Try a different type of paper. Did you notice anything different?

6. If you rub your hair longer with the balloon, can you increase the charge and the distance between the balloon and paper? Use the ruler to measure the greatest distance the balloon can be held to make the paper jump. What was your result?
Can something be solid and liquid at the same time and temperature? Turn a liquid into a solid right before your eyes and learn about suspensions and colloids while exploring marvelous, magic mud.

Materials:
- White craft glue (Elmers or other brand)
- Borax powder (found in laundry aisle in grocery stores)
- Water
- Measuring spoon and cup
- Two bowls
- Mixing spoon
- Food coloring (optional)
- Sandwich bag that seals

Directions:
1. Measure 1/2 cup glue and pour into one bowl.
2. Measure 1/2 cup water and pour into the same bowl with the glue.
3. Add food coloring (optional). Stir together the water, glue and coloring.
4. In another bowl, mix 1 teaspoon of borax powder into 1 cup water and stir until dissolved.
5. Add the glue-water mixture to the borax-water and stir it with the mixing spoon.
6. Keep stirring as much you can with the spoon, but eventually you will need to get your fingers in the bowl and knead the slime which is forming.

7. Once you have a nice ball of slime, take it out of the bowl. Keep kneading it in your hand or on a table.

8. Pour any extra water in the bowl down the sink for disposal.

Now observe and play with your slime. Describe what it looks like, feels like, smells like, and acts like.

Can you stretch the slime or break it apart?

What happens when you squeeze it or press it into a container?

What happens when you let it rest on your palm or on top of the table?

Store in a sealed sandwich bag in the refrigerator when not using. Keep away from carpet and small children.
High Five

What is your fingerprint signature? Fingertips help us hold onto things. They also create a unique signature for each of us. For a big investigation, compare your signature to each person in your family!

Materials:
- Pencil
- Paper or index card
- Clear scotch tape
- Measuring tablespoon and 5 spoons for stirring

Directions:
1. Rub a pencil back forth on a separate piece of paper or index card to make a very dark spot.
2. Rub the flat end of your finger in the smudge, then gently press a clear piece of tape on your finger. Do this one finger at a time.
3. Peel the tape slowly off the finger and place the lifted print on the correct spot on the chart.
4. Identify each print as arch (A), whorl (W), or loop (L).
5. Do this procedure for each of your 10 fingers. The end result, for example, (Right:A,W,L,A,A) is your fingerprint signature.
6. Do this for your family members and compare.

Simple fingerprint patterns:

Loop (L) Arch (A) Whorl (W)
<table>
<thead>
<tr>
<th>Digit #</th>
<th>Finger</th>
<th>Right Hand</th>
<th>Type of Print</th>
<th>Left Hand</th>
<th>Type of Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Thumb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Pointer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Middle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Pinkie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Do oil and vinegar (or water) mix? Why do we need to shake a salad dressing bottle? Make a wave bottle to find out, and then make some big waves to observe the properties of waves.

Materials:

♦ Plastic drink bottle with smooth sides. The lid needs to fit tightly. (A 1 liter soda bottle will work.)

♦ White vinegar (or water)

♦ Blue food coloring

♦ Oil. It can be a clear oil like mineral or baby oil, or a light colored vegetable cooking oil (like canola oil)

♦ Funnel (to minimize spills). You can make one using an index card, tape, and aluminum foil

♦ Electrical tape or duct tape

Directions:

1. Clean and dry the bottle, removing any labels.

2. Use a funnel so you don’t spill any liquid on the outside of the bottle.

If you don’t have one, roll up an index card into the shape of a funnel and tape it to hold the shape. Then take a piece of foil and wrap it around the funnel, again using tape. Pull out the index card and the foil will now be your funnel!
3. Fill the bottle 1/3 of the way with white vinegar (or you may use water).

4. Add drops of blue food coloring.

5. Fill the rest of the bottle with a light-colored oil like canola oil, or use clear mineral or baby oil.

6. Make sure to close the lid tightly. Use electrical tape to seal the cap. (Or you can use superglue if you get adult help.)

Describe what happens when you rock the bottle back and forth to create waves.

Shake the bottle. Now what happens?
How does a rocket work? Make a balloon rocket to find out how rockets propel themselves into space. How far can your rocket go?

Materials:
- Kite string
- A long balloon is best, but round will work too
- Two straws
- Two chairs (or a table leg or door knob)
- Tape, scissors, paper clip
- Measuring tool

Directions:
1. Thread a 10-15 foot length of kite string through a soda straw.
2. Tie the string onto two supports like a chair or a door knob so it is pulled tight.
3. Inflate a balloon but don’t tie it.
4. Either pinch the end or secure with a paper clip.
5. Tape the balloon to the top of the straw with two pieces of tape. Get someone to help you so you don’t let air out of the balloon too soon.

Background: Real rockets burn rocket fuel which creates a force that is shot out in one direction and propels the rocket forward. Newton's Third Law of motion explains that for every action there is an opposite reaction. Balloon rockets use air pressure for fuel. Air power!
6. To launch the rocket, release your hold on the balloon. If you used a paperclip, take it off carefully so you don’t poke a hole in the balloon.

7. Measure how far your rocket went and write down the distance on the chart.

<table>
<thead>
<tr>
<th>Trial Number</th>
<th>Full Straw</th>
<th>Shorter Straw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Launch the rocket again to see if it goes the same distance.

9. Now use a shorter piece of straw and launch the balloon again two times.

Explain what happened:

You can experiment further by using different size or shapes of balloon, or different types of string.
Can you get a big egg to go through a small opening?
By doing this experiment you will make the air molecules inside a jar move faster with heat.

Materials:
- Medium or large size hard-boiled egg, peeled
- Water
- Glass juice bottle

Procedure:
1. Hard boil a medium size or large size egg.
2. Let it cool down in cold water, and then peel the shell off.
3. Find a glass bottle (a juice bottle works well) with an opening slightly smaller than the egg. The egg should be able to rest in the opening.
4. Get adult help to heat some water on the stove.
5. Have the adult pour about 1 cup of the very hot water into the glass jar.
6. Place the egg on top of jar opening.
Watch and wait. What happens?

Did you see the egg wiggle as air left the bottle?

Why do you think the egg goes into the bottle?
Can you scare pepper and make it run away? Water molecules hold tightly together to form surface tension. Soap weakens surface tension. Surface tension can support the weight of some objects that would normally sink.

Materials:
- Bowl
- Water
- Pepper
- Liquid dishwashing soap
- Paper clips and a small square of toilet tissue

Directions:
1. Fill a bowl with clean water.
2. Next, sprinkle pepper on top of the water. Does the pepper float or sink?
3. Dip your clean finger into the pepper. What happens? (Draw it and explain.)
4. Now put a drop of dish detergent or liquid soap on your finger, and dip your finger into the pepper.

What happens now? (Draw it and explain.)

More surface tension fun:
Another fun activity is to bend one paperclip into a tool like in the picture to gently suspend another paper clip.
Can you suspend more than one paper clip?
What will adding a drop of soap to the bowl do?
How will you design a big tower that holds weight?
This is a design challenge so you may only use the materials listed below.

Materials:
- 20 small paper cups (8 oz. or less)
- 2 pieces of construction paper (or plain paper if you don’t have construction paper)
- 1 foot of masking tape
- Scissors
- Ruler to measure the tape and the tower height
- Small stuffed animal or toys of different sizes and weight

Directions:
Build at least a 1 foot tower using only these materials.

Challenge Rules:
1. Your tower needs to be at least 1 foot tall and be able to hold the weight of a small stuffed animal.
2. You may use scissors and rulers as tools to build and measure your big tower.
3. You can slice the cups in half, cut and flatten them, or cut the rims like an octopus.
4. You can cut the construction paper.

5. You can roll and tape the construction paper into tubes, fold the paper like a fan, or fold and tape the paper into strips.

6. Build your tower big and strong!

 Draw a picture of your design or take a photo and tape it here.

Test: Does your tower hold the weight of small stuffed animal?

Can the tower support other toys that you have collected?
Can you blow up a balloon until it is big without using your mouth? Yeast is a type of fungus. It is used to make bread. Yeast in the right conditions creates a gas called carbon dioxide.

Materials:
- Yeast (sold in the baking aisle in the grocery store)
- Sugar
- Measuring cup and teaspoon
- Round balloon
- Funnel
- Very warm water (but not too hot!)
- String
- Ruler

Directions:
1. Stretch the opening of the balloon and place a funnel inside the opening.
2. Pour 1 tablespoon dry yeast into the balloon through the funnel.
3. Pour 1 teaspoon of sugar into the balloon.
4. Fill a measuring cup with 1 cup of very warm water from the sink, and carefully pour the water into the balloon. You will need help to do this.
5. Remove the funnel and tie a knot in the balloon to keep the water-and-yeast mixture inside.
6. Measure how big the balloon is around with a piece of string and then measure the string with a ruler. (You are measuring the circumference of the balloon.)
7. Place the balloon in a warm place. On a summer day you can place it in a sunny window or outside.

8. Take measurements every ten minutes.

<table>
<thead>
<tr>
<th>Time</th>
<th>Balloon Size (Circumference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 minutes</td>
<td></td>
</tr>
<tr>
<td>10 minutes</td>
<td></td>
</tr>
<tr>
<td>20 minutes</td>
<td></td>
</tr>
<tr>
<td>30 minutes</td>
<td></td>
</tr>
<tr>
<td>40 minutes</td>
<td></td>
</tr>
<tr>
<td>50 minutes</td>
<td></td>
</tr>
<tr>
<td>60 minutes</td>
<td></td>
</tr>
</tbody>
</table>

What is happening?

You can also try blowing up another balloon this way: Use a funnel to pour 1/3 cup of baking soda into the balloon. Next add 1 cup of vinegar into a bottle. Slip the opening the balloon over the neck of the bottle. Lift the balloon up so the baking soda goes into the bottle.

What happens?

How did this experiment compare to the yeast in the balloon experiment?
How do plants grow in a greenhouse? Make a see-through greenhouse to watch a plant grow from a seed. Greenhouses provide warm, moist environments to help plants sprout and grow quickly. You will be able to observe both above and below the dirt.

Materials:

- 2 liter soda bottle with cap
- Potting soil (or soil from outside)
- Plant seeds (bean seeds work well)
- Strong scissors (knife optional)
- Hammer and nail (optional)
- Plate

Directions:

1. Clean and dry a 2-liter clear soda bottle.
2. Cut and peel off the label.
3. Have an adult carefully cut the bottle in half with scissors. (It helps to make an entry cut with a knife.)
4. On the lower half, have an adult poke a few holes in the bottom for three drainage holes. (Use the scissors, knife, hammer and nail, or a drill for this step. Be careful!)
5. Fill the bottom half of the bottle with potting soil.
6. Plant a number of seeds—bean seeds work well. Plant some of the roots next to the sides of the bottle so you can see the roots up close.

7. Cover the seeds with soil and water them.

8. Place the bottle on a plate.

9. Tuck the top half of the bottle over the bottom half. Cutting slits on the top’s edge may help it fit snugly, or use tape to keep the bottle together. Make sure the cap is on the bottle.

10. Water sparingly, as water condensation gets trapped in the greenhouse. If it gets too steamy, take off the cap for awhile.

11. Keep the greenhouse in a warm, sunny spot.

Observe how your plant grows and write observations about what you see. Draw pictures in the chart below. What happens first? What happens next? When you are done, you can plant your plants outside.
How big a bounce will a basketball and a tennis ball make together? Take advantage of how energy transfers from one item to another.

Materials:

- 1 large ball, like a basketball or soccer ball
- 1 small ball, like a tennis ball or rubber ball
- More balls for more experimenting
- Large paved area,
- A yardstick

Directions:

1. Take the balls outside to a safe paved area like a school playground or tennis court.
2. First hold the balls right next to each other in front of you. Right now the balls have “potential energy” or stored up energy.
3. Let go of both the balls at the same time. Now both balls have moving or “kinetic energy” and are pulled down by gravity.

What happened?

How big/high is the bounce for each ball? You can measure the height with a yardstick.
4. Now, hold the small ball on top of the large ball. Drop both the balls at the same time. Step back quickly!

What happens this time?

1, 2, 3 Drop together!

What happens if you do the same experiment using two large balls?

What happens if you do the same experiment using two small balls?

What happens if you hold two small balls stacked on the large ball and drop them? You can use a golf ball for the third ball, but make sure you have a big area and look out below!

What happened?

Note: As the balls hit the ground, the stored energy of the big ball is transferred to the small ball(s)
Catch It, Quickly!

Do you have a quick physical response to sounds and sights? You will be testing how fast the brain reacts to visual stimuli. Test the pinching reaction of friends or family members to see who has the quickest reaction to something that they see.

Materials:

- Ruler

Directions:

1. Hold a ruler at the highest number, letting it hang down as shown in the picture.

2. Have the person you are testing place their hand open at the bottom of the ruler, not touching the ruler.

3. Say that you will drop the ruler soon, but don’t let them know when. Don’t say anything. Their job is to catch the ruler as fast as they can after it is dropped.

4. Measure the level of their thumb on the ruler (in inches or centimeters.) That is their “reaction” level.

5. Record their number on the chart.

6. Give each person a 2nd try and record.

7. Have someone test you too.
Record different people’s reaction levels here:

<table>
<thead>
<tr>
<th>Person’s Name</th>
<th>Mark on Ruler, Reaction Level, 1st time</th>
<th>Mark on Ruler, Reaction Level, 2nd time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A lower number means a faster reaction time to stimuli. A high number is a slower reaction time.

If you repeat the experiment with the same person, does their reaction level change?

Are there any patterns in who has the quickest reaction? For example, compare male vs. female, older or younger.

What if you blindfold a person and repeat the experiment, but this time say “now” as you drop the ruler. Is the person’s response quicker to what they see (visual stimuli) or what they hear (auditory stimuli)?
Can water bend? Use static electricity to make water wiggle. You should get a big charge out of this exploration and learn why we say "opposites attract." Note: This experiment works best on a dry day.

Materials:
- Clean dry hair on your head
- Plastic comb, clean and dry.
- Water faucet in kitchen or bathroom

Directions:
1. Turn on a water faucet so that it has a very thin stream of cold water flowing. (Water can't be dripping out.)
2. Comb your hair at least 10 times with a clean comb. Electrons from your hair jump to the comb so the comb now has a negative electrical charge.

Water molecules have no net electrical charge. However when the negatively charged comb gets close, the positive side of water shifts towards the negative electrons on the comb.
3. Move your negatively charged comb close to, but not touching the stream of water.

Draw or describe what is happened.

How far can you pull the stream of water to follow the comb? Why do you think it is never pulled to touch the comb?

Do some more tests to see if you can change how you bend water.

- Use a different-sized comb.

- Have two people with different lengths of hair do the experiment. Is long hair or short hair best?

- Try a comb made out of different material than plastic. Or try rubbing a balloon or Styrofoam cup on your hair to see if they bend water.

What happens in one or more of these situations?
Your Question: What will float in water?

Description of Exploration: I picked 5 different things to put in my bathtub. First I guessed what would float and what would sink, and then I tested it.

Notes:
My Prediction:
Toy boat: yes
Ice cube: yes
Wash cloth: no
Rock: no
Toilet paper: no

Test Results:
Toy boat: yes
Ice cube: yes
Wash cloth: floated until it got wet, then sank
Rock: no
Toilet paper: floated until it got wet, then sank
Your Science Exploration

Your Question:

Description of Exploration:

Notes:
Your Science Exploration

Your Question:

Description of Exploration:

Notes:
Explore The Outdoors!

Champoeg State Park, south of Wilsonville, has ten miles of hiking and biking trails that wind through old growth hardwood forests along the Willamette River.

METRO’s Graham Oaks Nature Park on Wilsonville Road. Visit the park’s elder oak tree that is over 200 years old. Explore trails through forest, wetlands and an oak savannah that is being restored.

Walk to **Wilsonville’s Community Garden** near Wilsonville Memorial Park. Visit **CREST’s gardens** (Center for Research in Environmental Sciences & Technologies) near Boones Ferry Primary School. As a guest in these private gardens, you may observe, but please don’t touch! Crest also has a Farm-to-School site on Boeckman Road near Stafford Road.

Magness Memorial Tree Farm - Spend a day in the Woods ~ Free guided tour each Sunday at 2:00 pm. 31195 SW Ladd Hill Rd (west of Wilsonville)

Baldock Rest Area, just south of Wilsonville on Interstate 5 (milepost 281.6) is known for its short loop walk through the **Grove of the States**.

Willamette River Water Treatment Plant Park 10350 SW Arrowhead Creek Lane. An open meadow in the park is composed of native grasses and a loop path looks over the Willamette River.

Fields Bridge Park, West Linn, Oregon. Three remnants of cataclysmic ice-age floods, granite glacial erratics, weighing a combined 54,500 pounds are on display.

Visit the City of Wilsonville’s website for a complete list of city parks and trails. www.ci.wilsonville.or.us
Explore Science at the Library

The Wilsonville Public Library has a wealth of useful resources for a science-filled summer, including:

♦ **Science experiment books** for all ages and reading levels. Ask at the Children’s Desk for help finding books that are just right for you.

♦ **Table-top science activities** in the Children’s Room all summer long.

♦ **Science Adventure Weekly Prize Drawing**—Write a description of your science exploration and place it in the fish bowl on the Youth Services Reference Desk. Winners will be drawn and notified each week.

For a complete schedule of library summer events, pick up a copy of our Summer Reading Brochure or check the library website at www.wilsonville.library.org.

How is Science Adventure Funded?

Science Adventure is funded by the Wilsonville Public Library Foundation.